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Heredity in one-dimensional quadratic maps

M. Romera, G. Pastor, G. Alvarez, and F. Montoya
Instituto de Fı´sica Aplicada, Consejo Superior de Investigaciones Cientı´ficas, Serrano 144, 28006 Madrid, Spain

~Received 29 June 1998!

In an iterative process, as is the case of a one-dimensional quadratic map, heredity has never been men-
tioned. In this paper we show that the pattern of a superstable orbit of a one-dimensional quadratic map can be
expressed as the sum of the gene of the chaotic band where the pattern is to be found, and the ancestral path
that joins all its ancestors. The ancestral path holds all the needed genetic information to calculate the descen-
dants of the pattern. The ancestral path and successive descendant generations of the pattern constitute the
family tree of the pattern, which is important to study and understand the orbit’s ordering.
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I. INTRODUCTION

According to Crutchfield, Farmer, and Huberman@1#,
since the first physically motivated study of chaotic dyna
ics by Lorenz@2#, one-dimensional~1D! maps have played a
fundamental role in the field’s development despite their
parent simplicity. The 1D map obtained from a system
ordinary differential equations captures the essential ge
etry underlying the chaotic dynamics. Although such a
duction of dimension~from three to one, in Lorenz’s case!
cannot be uniformly applied to all dynamical systems,
many problems the technique provides more than suffic
heuristic insight into the processes responsible for cha
behavior@1#.

For dissipative dynamical systems that exhibit cascad
bifurcations, the dynamics can be described in practice b
1D map with a single smooth maximum. An example of su
maps is provided by 1D quadratic maps as the logistic m
xn115lxn(12xn) or the real Mandelbrot mapxn115xn

2

1c, wherel andc are the corresponding bifurcation param
eters. In many experiments, changes in the system beha
are studied as some parameter of the system is varied.
much theoretical interest has focused on characterizing
evolution of the dynamics as a function of a system para
eter @3#. If we consider a narrow parameter region near
onset of chaos via period doubling~it follows from Feigen-
baum’s universality@4#!, it is natural to expect that an unde
standing of the behavior of dissipative nonlinear systems
this region may be achieved via detailed analysis of dyna
ics of 1D maps, in particular, the appearance and coexiste
of the periodic orbits.

We have been motivated essentially by a study of
ordering of superstable orbits in the chaotic zone of 1D q
dratic maps@5#. As is well known, the periods of the supe
stable periodic orbits in 1D unimodal maps respond
Sharkovsky’s ordering @6,7# 1v2v4v•••v532v3
32v•••v5v3, which only orders the periods of the fir
appearance superstable periodic orbits; therefore, it is a
tial ordering.

A complete ordering of the superstable periodic orbits
the 1D unimodal maps, such as the logistic mapxn11
5lxn(12xn), was possible thanks to the work of Metrop
lis, Stein, and Stein~MSS! @8#. These authors introduced th
PRE 581063-651X/98/58~6!/7214~5!/$15.00
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concept of a superstable orbit pattern, which allows one
differentiate between orbits with the same period. As is w
known, the MSS pattern of a superstablep-periodic orbit
$x0 ,x1 ,...,xp21 ,x0 ,...%, where the initial valuex0 corre-
sponds to the map critical point, is obtained by chang
each numerical valuexi ( i .0) by the letters L~left! ~if x1
,x0) or R ~right! ~if xi.x0). In addition, they introduced
the concepts of harmonic of a patternP, H(P), and antihar-
monic of a patternP, A(P), and they enunciated a theore
to calculate the lower period pattern between two given on
P1 with parameterl1 and P2 with parameterl2 (l1,l2),
by means of the intersectionH(P1)ùA(P2). In such a man-
ner, they ordered periodic orbits as far as period 11 in
pioneer table with 209 patterns@8#.

II. ORDERING OF THE ORBITS IN A NONBINARY TREE

Let us consider a 1D quadratic map, like the logistic m
xn115lxn(12xn). In Fig. 1~a!, we show the graph of the
MSS ordering in the neighborhood of the pattern RL2, ob-
tained by applying repeatedly the MSS theorem, as don
Ref. @9#. For example, by applying three times this theore
from the patterns RL2 and RL3RL ~Nos. 94 and 103 of the
appendix table of Ref.@8#! the period-10 patternP10
~rounded with a circle in the figure! can be calculated:

H~RL2!ùA~RL3RL!5RL3RL2,

H~RL3RL2!ùA~RL3RL!5RL3RL2R,

P105H~RL3RL2R!ùA~RL3RL!5RL3RL2RL. ~1!

We proposed a nonbinary tree as a model of ordering
the superstable periodic orbit patterns in 1D quadratic m
@10#, and we gave the rules to compose two patterns of
tree @5#. We proposed this model after carrying out ma
measurements and verifications on the antenna of
Mandelbrot-like set of the complex form of the 1D quadra
map@10#. In Fig. 1~b!, we show the tree ordering of the sam
pattern RL2 vicinity as the logistic map in Fig. 1~a!, which,
as can be seen, does not correspond to a binary tree.
type of nonbinary tree ordering has several advantage
7214 © 1998 The American Physical Society
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PRE 58 7215HEREDITY IN ONE-DIMENSIONAL QUADRATIC MAPS
relation to the triangular structure graph of MSS:~a! The tree
@Fig. 1~b!# is clearer than the graph@Fig. 1~a!#. ~b! The tree is
structured, and its parts are separated by Misiurewicz po
@10#. ~c! The development of the three needs an only ini
pattern, as we shall see afterwards, whereas the develop
of the graph needs two initial patterns.~d! It allows one to
calculate the patterns in an easy manner. So, patternP10 @Eq.
~1!# can be directly obtained from the pattern RL3RL, by
using the method that we show afterwards, with only o
easy sum with direction@5#

P105CRL3RL 1QCRL5CRL3RL2RL,

where we add the letter C~corresponding tox051/2) at the
beginning of each MSS pattern so that a pattern of periop
hasp letters instead of (p21) letters@10#.

III. HEREDITY CONCEPT

In this work we shall show that the ordering of the orb
in a nonbinary tree allows the introduction of the concept
heredity in the iterative process, whose model is a 1D q
dratic map. So, given a patternP, we can calculate its family
tree.

Let us consider a 1D quadratic map. IfP is the pattern of
a superstable orbit, we say thatP is a legal pattern. IfP is a
pattern that does not correspond to any orbit, we say thatP is
nonlegal pattern. We can know easily ifP is a legal pattern
or not by applying the MSS legal inverse path~l.i.p! algo-
rithm @8#: the inverse path of a legal pattern is a l.i.p and
inverse path of a nonlegal pattern is not a l.i.p.

A legal patternP can be decomposed in an augendP1 and
an addendP2

FIG. 1. Pattern generation up to period 11 in the vicinity of t
pattern RL2 of the logistic mapxn115lxn(12xn). ~a! MSS model.
~b! Nonbinary tree model.
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P5P1 1JP2 , ~2!

where 1I is the sum with direction1Q or 1W @5#. The augend
can be either a legal pattern or anF antiharmonic@10# ~the
only permitted nonlegal pattern in this pattern decompo
tion!. However, the addend must be always a legal patte
Sometimes,P can be decomposed in several ways; in t
case, we can choose any of them without this decision h
ing any influence in the final result.

We say thatP1 is an ‘‘ancestor’’ ofP ~or P is a ‘‘descen-
dant’’ of P1), and P2 , the edge that joinsP1 to P, is the
‘‘heredity’’ that the patternP1 transmits to the patternP, as
we shall see afterwards. We use the lettera for ancestors and
the letterh for heredities. By successive decompositions
Eq. ~2! we have~see a particular case in Fig. 2, which co
responds to anL map @5#!

P5an5an21 1Ihn , an215an22 1Ihn21 ,..., a15a0 1Ih1 ,
~3!

wherean21 is the ‘‘father’’ or the closer ancestor ofP, and
a0 is the first ancestor or the more remote ancestor ofP (a0
is always a pattern of the period-doubling cascade, whic
the geneG of the chaotic band whereP is located@5#!. Let
us note that expressions~3! are general and therefore th
sums have double direction,1I , while for any particular
case, as that shown in Fig. 2, each sum has only one d
tion. From Eq.~3! we can write the ‘‘ancestral decompos
tion’’ of P as

P5a0 1I( hi , ~4!

where

( hi5h1 1Ih2 1I¯ 1Ihn ~5!

is the ‘‘ancestral path’’ of patternP because it is the sum o
the edges~heredities! that join the ancestors ofP.

Let us note that we have decomposed a given patternP in
the sum of its first ancestor and its ancestral path@Eq. ~4!#.
The ancestral path holds the genetic information that allo
calculating the descendants ofP.

We call the first generation of the descendants of a pat
the ‘‘children.’’ For example, in Fig. 1~b! the children of the

FIG. 2. A sketch of ancestors, heredities, and ancestor path
patternP of a 1D quadraticL map.
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pattern RL3RL are ch1r , ch1l , ch2r , ch2l , ch3r , and ch3l .
Usually, the children form couples of the same period, an
in each pair, children are situated on either side of the fath
For all the children, both on the right and left, the period
greater the closer to the father. The pattern of a child can
obtained by the sum with direction

ch5P 1Ih, chr5P 1Wh, chl5P 1Qh, ~6!

whereh is the ‘‘heredity’’ that the patternP transmits to its
child ch. By analyzing many experiments where we hav
studied the descendants of a patternP, we have deduced that
this heredity can be calculated as follows.

Let ai 115ai 1Ihi 11 be the decomposition of a given an
cestorai 11 of P ~see Fig. 2!. If the sum 1I has a canonical

direction (1Q for L maps and1W for R maps@5#! the decom-
position is canonical and the ancestorai ( i .0) is a ‘‘hered-
ity transmitter’’ to a child ofP. If the sum has the antica-
nonical direction (1Q for R maps and1W for L maps! the
decomposition is anticanonical, and the ancestorai is not a
heredity transmitter to a child ofP. However, in this case,
the children of the ancestorai that have smaller periods than
ai 11 are heredity transmitters to a child ofP.

To calculate all the children of a patternP, we have to
composeP on the right and left with all the hereditiesh
~heredity transmitters!, and place the obtained patterns, as w
stated above, in such a manner that those with greater p
ods are closer to the father. It is possible that one or both
the two lower period children ofP do not exist. We must
verify always that these two patterns are legal patterns.
they are, all the other children are legal patterns; however
they are not, we must verify if the next lower period childre
are or are not legal patterns, and so on.

IV. EXAMPLE

Let us apply this model to the period-21 patternP
5CLRL4RL6RL4RL of the real Mandelbrot map located a
the parameter valuec521.612 529 207 407 61... . In this
case, there are only two possible initial decompositions
the patternP according to Eqs.~2! or ~3!. They are

P5an5CLRL4RL6RL41QCL ~7!

and

P5an5CLRL4RL41WCLRL4RL. ~8!

Let us first look at decomposition~7!. We have

an5an21 1Qhn5CLRL4RL6RL4 1QCL,

an215an22 1Whn215CLRL4RL4 1WCLRL4,

an225an23 1Whn225CLRL4RL2 1WCL,

an235an24 1Whn235CLRL2 1WCLRL2,
~9!
d,
er.
s
be

e

e
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an245an25 1Whn245CLR1WCL,

an255an26 1Qhn255CL 1QC,

an265an27 1Qhn265C1QC,

an275a0 .

The ancestor path is

( hi5C1QC1WCL 1WCLRL2 1WCL 1WCLRL4 1QCL.

~10!

It can be useful to rename the ancestors and heredities
n57 @Eq. ~9!#, we have an265a1 ,..., an215a6 , and
hn265h1 ,..., hn5h7 . It is easy to verify from Eq.~9! that
the ancestorsa1 anda6 are heredity transmitters. Hence, the
are composed withP to generate children ofP:

ch1r5P 1Wa15CLRL4RL6RL4RLRL,

ch1l5P 1Qa15CLRL4RL6RL4RL3,
~11!

ch4r5P 1Wa65CLRL4RL6RL4RLRLRL4RL6RL4,

ch4l5P 1Qa65CLRL4RL6RL4RL3RL4RL6RL4.

It is also easy to verify from Eqs.~9! that the ancestors
a2 , a3 , a4 , anda5 are not heredity transmitters. In such
case, only their children, with a lower period than the ne
ancestor, are heredity transmitters. Thus,a2 has no heredity
transmitter, a3 has only one heredity transmitter ch(a3)
5CLRL4, a4 has no heredity transmitter, anda5 has only
one heredity transmitter ch(a5)5CLRL4RL6. Hence these
heredity transmitters have to be composed withP to generate
children ofP:

ch2r5P 1WCLRL45CLRL4RL6RL4RLRLRL4,

ch2l5P 1QCLRL45CLRL4RL6RL4RL3RL4,
~12!

ch3r5P 1WCLRL4RL65CLRL4RL6RL4RLRLRL4RL6,

ch3l5P 1QCLRL4RL65CLRL4RL6RL4RL3RL4RL6.

Figure 3 is a sketch of the family tree of the patternP
5CLRL4RL6RL4RL. The ancestors (a0 ,...,a6), heredities
(h1 ,...,h7), and children~of a3 , a5 , andP! are shown. The
periods of ancestors and children are also shown surroun
by a circle.

Let us see now the second decomposition~8!. We have
~see Fig. 3!

P5CLRL4RL4 1WCLRL4RL5a5 1Wh68 .
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From here on, the decomposition ofa5 is the same as in the
former case. It is easy to verify that we obtain the sa
results through both paths. Indeed, let us note that in the
case@Eq. ~7!#, a6 was a heredity transmitter ancestor. No
in Eq. ~8!, a6 is not an ancestor because it is outside
ancestral path; however, it is a heredity transmitter since
a child of a5 and it has a period lower than the period ofP.

Let us see now a numerical verification of results~11! and
~12!. By using the Myrberg formula@11# we have calculated
the parameters values of all the children ofP, from their
patterns calculated in Eqs.~11! and ~12!. The results are
shown in Table I. As we can see, all the children are pla
close to the father.

The children with a certain period are the closer patte
to the father of all the patterns with that period. As can
numerically checked, the patterns obtained by Eqs.~11! and
~12! verify this property; therefore, they are indeed childr
of P. For example, let us check if the two children ofP with
the greatest period, ch4r and ch4l ~see Fig. 3!, are the
period-40 patterns closer toP. The total number of period-40
superstable periodic orbits in the chaotic zone of the r
Mandelbrot map is huge, 13 743 895 344 orbits according

FIG. 3. Ancestors and children of the period-21 patternP
5CLRL4RL6RL4RL located at the parameter valuec5

21.612 529 207 407 61... of the real Mandelbrot mapxn115xn
2

1c .

TABLE I. Parameter values of the children of the patternP
5CLRL4RL6RL4RL in the real Mandelbrot mapxn115xn

21c.

Pattern Period Parameter valuec

ch1r 23 21.612 437 281 588 79...

ch2r 28 21.612 504 959 281 62...

ch3r 35 21.612 523 192 353 40...

ch4r 40 21.612 527 255 337 07...

P 21 21.612 529 207 407 61...

ch4l 40 21.612 531 189 807 37...

ch3l 35 21.612 535 343 767 13...

ch2l 28 21.612 555 220 061 27...

ch1l 23 21.612 652 502 658 42...
e
st
,
e
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Ref. @12# ~most of them nearc522), but two of them are
the children ch4r and ch4l , as we shall see next.

As is well known, the parameter values of the supersta
periodic orbits of periodp are the zeros of the critical poly
nomial Pp , where P050, P15c, P25c21c, P35(c2

1c)21c,... . In Fig. 4~a!, we depict a general view of the
polynomial P40, and in Fig. 4~b! we depict the polynomial
P40 in the neighborhood of patternP. We can see that, in
deed, ch4r and ch4l are period-40 patterns closer toP. Like-
wise, we can verify it for the other children ofP.

As we can see in Fig. 4~b!, in the neighborhood ofP the
polynomial P40 is quasisymmetric with regard toP. Hence
each child of any pair of children of a pattern have to
placed symmetrically, one on the right and the other on
left.

Going back to the model, we can repeat the process
calculate the children of each child ofP, i.e., the grandchil-
dren or the second generation descendants ofP. By repeating
this process, we can calculate the third, fourth, etc. gen
tion descendants, obtaining in such a manner a true fam
tree of the descendants ofP.

V. CONCLUSIONS

Given a patternP, and without any need for other dat
we can calculate the complete family tree of such a patt
P. To this end, we first carry out the ancestral decomposit
of P @Eq. ~4!#, and we obtain the ancestors ofP. Next, by
using the genetic information, which is implicit in the ance
tral decomposition, we can generate all the descendant
the patternP. This study can be extended to all 1D unimod
maps with a negative Schwarzian derivative. The extens
of this study to higher dimensional maps will be the goal
future research.
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FIG. 4. Critical polynomialP40 of the real Mandelbrot map
xn115xn

21c. ~a! General view.~b! Detail in the neighborhood of
the parameter valuec521.612 529 207 407 61... .
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