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Heredity in one-dimensional quadratic maps

M. Romera, G. Pastor, G. Alvarez, and F. Montoya
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(Received 29 June 1998

In an iterative process, as is the case of a one-dimensional quadratic map, heredity has never been men-
tioned. In this paper we show that the pattern of a superstable orbit of a one-dimensional quadratic map can be
expressed as the sum of the gene of the chaotic band where the pattern is to be found, and the ancestral path
that joins all its ancestors. The ancestral path holds all the needed genetic information to calculate the descen-
dants of the pattern. The ancestral path and successive descendant generations of the pattern constitute the
family tree of the pattern, which is important to study and understand the orbit’s ordering.
[S1063-651X98)04212-3

PACS numbd(s): 05.45+b, 87.10+e

[. INTRODUCTION concept of a superstable orbit pattern, which allows one to
differentiate between orbits with the same period. As is well
According to Crutchfield, Farmer, and Hubermfh, known, the MSS pattern of a superstalpigeriodic orbit
since the first physically motivated study of chaotic dynam-{X,X1,....Xp-1,Xg,...}, Where the initial valuex, corre-
ics by LorenZ 2], one-dimensionallD) maps have played a sponds to the map critical point, is obtained by changing
fundamental role in the field's development despite their apeach numerical valug; (i>0) by the letters L(left) (if x;
parent simplicity. The 1D map obtained from a system of<xg) or R (right) (if x;>Xp). In addition, they introduced
ordinary differential equations captures the essential geonthe concepts of harmonic of a pattéPnH(P), and antihar-
etry underlying the chaotic dynamics. Although such a re-monic of a patterrP, A(P), and they enunciated a theorem
duction of dimensior(from three to one, in Lorenz’s cgse to calculate the lower period pattern between two given ones,
cannot be uniformly applied to all dynamical systems, forP; with parametei; and P, with parametein, (A;<\,),
many problems the technique provides more than sufficierlhy means of the intersectid#i(P,) NA(P,). In such a man-
heuristic insight into the processes responsible for chaotiger, they ordered periodic orbits as far as period 11 in a
behavior[1]. pioneer table with 209 patteri8].
For dissipative dynamical systems that exhibit cascading
bifurcations, the dynamics can be described in practice by @ oRDERING OF THE ORBITS IN A NONBINARY TREE
1D map with a single smooth maximum. An example of such
maps is provided by 1D quadratic maps as the logistic map Let us consider a 1D quadratic map, like the logistic map
Xn11=AXp(1—x,) or the real Mandelbrot map, ;=x2  Xn+1=AXn(1—Xp). In Fig. 1(a), we show the graph of the
+c, where\ andc are the corresponding bifurcation param- MSS ordering in the neighborhood of the pattern’Rbb-
eters. In many experiments, changes in the system behaviétined by applying repeatedly the MSS theorem, as done in
are studied as some parameter of the system is varied. Thiref. [9]. For example, by applying three times this theorem
much theoretical interest has focused on characterizing thom the patterns Rt.and RERL (Nos. 94 and 103 of the
evolution of the dynamics as a function of a system paramappendix table of Ref[8]) the period-10 patternP;,
eter[3]. If we consider a narrow parameter region near thelrounded with a circle in the figureean be calculated:
onset of chaos via period doublirfg follows from Feigen-
baum’s universality4]), it is natural to expect that an under- H(RL?)NA(RL3RL)=RL3RL?,
standing of the behavior of dissipative nonlinear systems in
this region may be achieved via detailed analysis of dynam-
ics of 1D maps, in particular, the appearance and coexistence
of the periodic orbits.
We have been motivated essentially by a study of the Po=H(RL’RL?R)NA(RL3RL)=RL°RL?RL. (1)
ordering of superstable orbits in the chaotic zone of 1D qua-
dratic mapg5]. As is well known, the periods of the super-  We proposed a nonbinary tree as a model of ordering of
stable periodic orbits in 1D unimodal maps respond tothe superstable periodic orbit patterns in 1D quadratic maps
Sharkovsky's ordering [6,7] 1<12<14<---<]5Xx2<3 [10], and we gave the rules to compose two patterns of this
x2<---<15<13, which only orders the periods of the first tree [5]. We proposed this model after carrying out many
appearance superstable periodic orbits; therefore, it is a pameasurements and verifications on the antenna of the
tial ordering. Mandelbrot-like set of the complex form of the 1D quadratic
A complete ordering of the superstable periodic orbits ofmap[10]. In Fig. 1(b), we show the tree ordering of the same
the 1D unimodal maps, such as the logistic map ; pattern RI2 vicinity as the logistic map in Fig. (&), which,
=AXy(1—X,), was possible thanks to the work of Metropo- as can be seen, does not correspond to a binary tree. This
lis, Stein, and SteitMSS) [8]. These authors introduced the type of nonbinary tree ordering has several advantages in

H(RL®RL?) NA(RL®RL)=RL°RL?R,
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FIG. 2. A sketch of ancestors, heredities, and ancestor path of a
patternP of a 1D quadratid- map.

P=P,¥P,, ®)
where T is the sum with direction+ or + [5]. The augend
can be either a legal pattern or Bnantiharmonid10] (the
only permitted nonlegal pattern in this pattern decomposi-
tion). However, the addend must be always a legal pattern.
SometimesP can be decomposed in several ways; in this
case, we can choose any of them without this decision hav-

FIG. 1. Pattern generation up to period 11 in the vicinity of the jng any influence in the final result.

pattern RI? of the logistic mapx,,, ;=AX,(1—X,). (&) MSS model.
(b) Nonbinary tree model.

relation to the triangular structure graph of M$8: The tree
[Fig. 1(b)] is clearer than the grafrig. 1(a)]. (b) The tree is

We say thaP, is an “ancestor” ofP (or P is a “descen-
dant” of P;), andP,, the edge that join®; to P, is the
“heredity” that the patternP, transmits to the patterR, as
we shall see afterwards. We use the lestéor ancestors and
the letterh for heredities. By successive decompositions as

structured, and its parts are separated by Misiurewicz pointgq. (2) we have(see a particular case in Fig. 2, which cor-
[10]. (¢) The development of the three needs an only initialresponds to ah map[5])

pattern, as we shall see afterwards, whereas the development

of the graph needs two initial patterr(gl) It allows one to P:an:anil(—l_—)hn, an,lzan,zihn,l,..., alzaoThl,
calculate the patterns in an easy manner. So, pa&egyfEq. 3)

(1)] can be directly obtained from the pattern 3L, by

using the method that we show afterwards, with only onewherea,_, is the “father” or the closer ancestor &, and
easy sum with directiofi5] a, is the first ancestor or the more remote ancestd? ¢,

is always a pattern of the period-doubling cascade, which is
the geneG of the chaotic band where is located[5]). Let

us note that expression8) are general and therefore the
sums have double directionf, while for any particular
case, as that shown in Fig. 2, each sum has only one direc-

tion. From Eq.(3) we can write the “ancestral decomposi-
tion” of P as

P10=CRL3RL+CRL=CRL3RL?RL,

where we add the letter @orresponding tx,=1/2) at the
beginning of each MSS pattern so that a pattern of pgpiod
hasp letters instead of f— 1) letters[10].

lll. HEREDITY CONCEPT

P=a,+ 2 hi, @)
In this work we shall show that the ordering of the orbits
in a nonbinary tree allows the introduction of the concept ofyhere
heredity in the iterative process, whose model is a 1D qua-
dratic map. So, given a patte®) we can calculate its family e s
tree. 2 hi=h,Fhy+Fh, ®)

Let us consider a 1D quadratic map Hfis the pattern of
a superstable orbit, we say tHats a legal pattern. IP is a
pattern that does not correspond to any orbit, we sayRhst
nonlegal pattern. We can know easilyHfis a legal pattern Let us note that we have decomposed a given paReém
or not by applying the MSS legal inverse pdth.p) algo- the sum of its first ancestor and its ancestral g&it. (4)].
rithm [8]: the inverse path of a legal pattern is a l.i.p and theThe ancestral path holds the genetic information that allows
inverse path of a nonlegal pattern is not a L.i.p. calculating the descendants Bf

A legal patterrP can be decomposed in an augéhdand We call the first generation of the descendants of a pattern
an addend?, the “children.” For example, in Fig. () the children of the

is the “ancestral path” of patter® because it is the sum of
the edgeghereditie$ that join the ancestors d.
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pattern RERL are ch,, chy, chy,, chy, chy,, and chy . an_4=a,_s+h,_4=CLR+CL,
Usually, the children form couples of the same period, and,

in each pair, children are situated on either side of the father. _ _
For all the children, both on the right and left, the period is ap-5=ap-¢ +hy-s=CL +C,
greater the closer to the father. The pattern of a child can be

obtained by the sum with direction an—6:an—7:hn—6:C¢C;

ch=P¥h, ch=P+h, ch=P%h, (6) a,_7=a
n—-7—_0-

whereh is the “heredity” that the patter® transmits to its
child ch. By analyzing many experiments where we have
studied the descendants of a pattBrrwe have deduced that
this heredity can be calculated as follows.

Let ai+1=aiThi+1 be the decomposition of a given an-
cestora, ,; of P (see Fig. 2 If the sum+ has a canonical (10)

direction (+ for L maps and+ for R maps[5]) the decom-

position is canonical and the ancestpr(i>0) is a “hered-
ity transmitter” to a child ofP. If the sum has the antica- ; i
h,_¢=h1,..., h,=h. It is easy to verify from Eq(9) that

nonical dlr_e_ct|or1 t 1_‘or R maps and+ for L mgps) the the ancestora; andag are heredity transmitters. Hence, they
decomposition is anticanonical, and the anceafas not a 4.0 composed witl® to generate children d®:

heredity transmitter to a child d?. However, in this case,
the children of the ancester that have smaller periods than

The ancestor path is

> hj=C+C+CL+CLRLZ+CL+CLRL*+CL.

It can be useful to rename the ancestors and heredities. As
n=7 [Eq. (9)], we havea,_g=a;i,..., a,_1=ag, and

a; ., are heredity transmitters to a child Bf ch;, =P +a;=CLRL*RL°RL*RLRL,
To calculate all the children of a patte®y we have to
composeP on the right and left with all the hereditids DA _ 41 6P| 4D 3
(heredity transmittedsand place the obtained patterns, as we chy =P +a,=CLRL'RL'RL'RLY,
stated above, in such a manner that those with greater peri- (12)
ods are closer to the father. It is possible that one or both of  ch, =P+ ag= CLRL*RL®RL*RLRLRL*RL®RL,
the two lower period children oP do not exist. We must
verify always that these two patterns are legal patterns. If —
they are, all the other children are legal patterns; however, if ~ Chy=P +as=CLRL*RL°RL*RL*RL*RL°RL".
they are not, we must verify if the next lower period children
are or are not legal patterns, and so on. It is also easy to verify from Eqg9) that the ancestors
a,, a;, a4, andas are not heredity transmitters. In such a
IV. EXAMPLE case, only their children, with a lower period than the next

ancestor, are heredity transmitters. Thaishas no heredity

transmitter,a; has only one heredity transmitter chj
=CLRL*, a, has no heredity transmitter, arsg has only
ne heredity transmitter chf) =CLRL*RL®. Hence these
eredity transmitters have to be composed Witto generate

Let us apply this model to the period-21 pattebh
=CLRL*RLORL“RL of the real Mandelbrot map located at
the parameter value=—1.612 529 207 407 61.... In this
case, there are only two possible initial decompositions o

the patternP according to Egs(2) or (3). They are children of P:
P=a,=CLRL*RL®RL*FCL (7) chy, =P + CLRL*= CLRL*RL®RL*RLRLRL?,
and chy =P FCLRL*= CLRL*RL®RL*RL3RL?, 12
P=a,=CLRL'RL*+ CLRL'RL. (8  chy=P+CLRL*RL®=CLRL*RL°RL*RLRLRL*RL®,
Let us first look at decompositiofY). We have chy = P FCLRLRLS= CLRLRLERL*RL3RL*RLE,
a,=a,_; +h,=CLRL*RL®RL* +CL, Figure 3 is a sketch of the family tree of the pattén

=CLRL*RL®RL*RL. The ancestorsag,...,ag), heredities

_ - . (hy,...,h7), and childrenof a3, ag, andP) are shown. The
ap-1=a-» +hy_;=CLRL'RL" +CLRL", periods of ancestors and children are also shown surrounded
by a circle.

an,2=an,3_+)hn,2=CLRL4RL2 Tl (seLee;[:iL;S ;ee now the second decompositi8h We have

a,_s=a, 4+ h,_s=CLRL?F CLRL?, P=CLRL*RL*+ CLRL*RL=ag + h;.
9
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FIG. 3. Ancestors and children of the period-21 pattén FIG. 4. Critical polynomialP,, of the real Mandelbrot map

— 4 6 4 —

=CLRL'RL°'RL'RL located at the parameter value;—z xn+1:xﬁ+ c. (a) General view.(b) Detail in the neighborhood of
—1.612 529 207 407 61... of the real Mandelbrot map ;=Xx;, the parameter value= — 1.612 529 207 407 61... .

+c.

Ref.[12] (most of them neac= —2), but two of them are

From here on, the decomposition @f is the same as in the the children cly, and ch,, as we shall see next.
former case. It is easy to verify that we obtain the same As is well known, the parameter values of the superstable
results through both paths. Indeed, let us note that in the firgieriodic orbits of periog are the zeros of the critical poly-
case[Eq. (7)], ag was a heredity transmitter ancestor. Now, nomial P,, where P,=0, P;=c, P,=c?+c, P3=(c?
in Eqg. (8), ag is not an ancestor because it is outside the+c)?+c,... . InFig. 4a), we depict a general view of the
ancestral path; however, it is a heredity transmitter since it ipolynomial P,q, and in Fig. 4b) we depict the polynomial
a child ofas and it has a period lower than the periodRf P,y in the neighborhood of pattefd. We can see that, in-

Let us see now a numerical verification of resit$) and  deed, ch, and ch, are period-40 patterns closerRo Like-
(12). By using the Myrberg formul@l1] we have calculated wise, we can verify it for the other children &
the parameters values of all the children Bf from their As we can see in Fig.(8), in the neighborhood d® the
patterns calculated in Eq$ll) and (12). The results are polynomial P, is quasisymmetric with regard . Hence
shown in Table I. As we can see, all the children are placegéach child of any pair of children of a pattern have to be
close to the father. placed symmetrically, one on the right and the other on the

The children with a certain period are the closer patterngeft.
to the father of all the patterns with that period. As can be Going back to the model, we can repeat the process and
numerically checked, the patterns obtained by Efj) and  calculate the children of each child Bf, i.e., the grandchil-
(12) verify this property; therefore, they are indeed childrendren or the second generation descendan®s &y repeating
of P. For example, let us check if the two children®fwith  this process, we can calculate the third, fourth, etc. genera-
the greatest period, gh and ch, (see Fig. 3 are the tion descendants, obtaining in such a manner a true family
period-40 patterns closer # The total number of period-40 tree of the descendants Bf
superstable periodic orbits in the chaotic zone of the real
Mandelbrot map is huge, 13 743 895 344 orbits according to V. CONCLUSIONS

Given a patterrP, and without any need for other data,
we can calculate the complete family tree of such a pattern
P. To this end, we first carry out the ancestral decomposition
of P [Eq. (4)], and we obtain the ancestors Bf Next, by

TABLE |. Parameter values of the children of the pattétn
=CLRL*RL®RL*RL in the real Mandelbrot mag, ;=x2+c.

Pattern Period Parameter valoe i o X GHAESTIS O

using the genetic information, which is implicit in the ances-
chy, 23 —1.612 437 281 588 79... tral decomposition, we can generate all the descendants of
chy, 28 —1.612 504 959 281 62... the patterrP. This study can be extended to all 1D unimodal
chy, 35 —1.612 523 192 353 40... maps with a negative Schwarzian derivative. The extension
chy 20 1,612 527 255 337 07... of this study to higher dimensional maps will be the goal of

P 21 161252020740761.,, [Ure research.
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